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ABSTRACT
For the past two decades, the DB community has devoted substan-
tial research to take advantage of cheap clusters of machines for
distributed data analytics—we believe that we are at the beginning
of a paradigm shift. The scaling laws and popularity of AI mod-
els lead to the deployment of incredibly powerful GPU clusters in
commercial data centers. Compared to CPU-only solutions, these
clusters deliver impressive improvements in per-node compute,
memory bandwidth, and inter-node interconnect performance.

In this paper, we study the problem of scaling analytical SQL
queries on distributed clusters of GPUs, with the stated goal of
establishing an upper bound on the likely performance gains. To
do so, we build a prototype designed to maximize performance
by leveraging ML/HPC best practices, such as group communica-
tion primitives for cross-device data movements. This allows us
to conduct thorough performance experimentation to point our
community towards a massive performance opportunity of at least
60×. To make these gains more relatable, before you can blink twice,
our system can run all 22 queries of TPC-H at a 1TB scale factor!
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1 INTRODUCTION
The massive parallelism and multi-TB/sec memory bandwidths
offered by modern GPUs are hugely beneficial for accelerating
SQL analytics queries. Consequently, GPU acceleration for SQL
analytics continues to receive much attention, and numerous re-
cent studies have extended the state of the art to accelerate query
processing on GPUs [32, 69, 88, 104]. At the same time, driven by
the enormous potential and need for supporting the training and
inferencing of GenAI models, GPU technology has been rapidly
evolving, both within the GPU hardware itself, as well as at the
system level with the introduction of multi-GPU machines and
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(a) Architecture (b) Best times

Figure 1: (a) Multi-GPU machine architecture. IB: InfiniBand.
(b) Best total run time for all 22 queries of TPC-H using 5
machines (40 GPUs).

high-bandwidth interconnects [3, 19, 20]. We believe that such ad-
vances have opened new opportunities for SQL acceleration, at
scales and speeds unimaginable just a few years ago. Multi-GPU
machines will drive the next wave of acceleration for analytics.

Single-GPU acceleration for SQL analytics has traditionally faced
two performance bottlenecks [80]: (1) limited high-bandwidth mem-
ory (HBM) capacity on the GPU; and (2) low CPU-GPU data move-
ment bandwidth (over PCIe) compared to available CPU-memory
bandwidths. The recent availability of multi-GPU machines from
NVIDIA and AMD has alleviated these concerns by offering op-
portunities for resource aggregation. For example, the NVIDIA
A100/H100 and AMD MI300X eight-GPU machines have an ag-
gregate HBM capacity of 640 GiB and 1.5 TiB per machine, re-
spectively, thereby enabling larger datasets to remain resident in
GPU HBM without requiring frequent CPU-GPU transfers. With a
separate PCIe link per GPU, the aggregate CPU-GPU PCIe band-
width in multi-GPU machines is comparable to the CPU main mem-
ory bandwidths available in high-end dual-socket servers today.
Additionally, multi-GPU machines support high-bandwidth data
exchange between GPUs, within and across machines, thereby
enabling high scale-up and scale-out performance for distributed
query processing—data exchange operations for shuffle and broad-
cast play a critical role in running analytical queries at scale and
are often limited by the network bandwidth. But not anymore!

Figure 1a shows the architecture of a scale-up 8-GPU machine,
which we use as a building block for our scale-out cluster setups.
The GPUs are interconnected by a high-bandwidth backplane net-
work, made up of NVLinks and NVSwitches for NVIDIA multi-GPU
machines, and Infinity Fabric for AMD multi-GPU machines. The
bandwidth for both outgoing and incoming traffic to each GPU
is in the order of several hundred GB/sec (e.g., up to 450 GB/sec
on the NVIDIA 8-H100 DGX machines, which is more than 7×

141

https://doi.org/10.14778/3773749.3773754
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773754


the CPU-GPU PCIe gen5 bandwidth), and also exceeds the single-
socket CPU-main memory bandwidths of most modern servers.
The inter-GPU backplane network within these machines offers
up to 3.6 TB/sec of aggregate bandwidth for shuffle operations, far
exceeding what is available across NUMA CPU sockets [59]. These
multi-GPU machines also have impressive scale-out performance.
Our highest-performing clusters provide up to 400 GB/sec band-
width between machines with eight Mellanox NICs, one per GPU.
As we will show, this can speed up SQL query performance by more
than an order of magnitude compared to using traditional lower-
bandwidth Ethernet connectivity (100 Gbits/sec) between machines.
Finally, to make things practical, such machines are available in the
cloud today [2, 17, 54, 68, 84], thereby expanding their access and
affordability to the community with on-demand pricing models.

In this work, we show that distributed SQL query processing
at very high speeds is possible using a cluster of multi-GPU ma-
chines with high-bandwidth interconnects. While prior systems
such as HeavyDB [33] and Theseus [5, 25] have explored SQL ac-
celeration with multiple GPUs, this paper pushes the boundaries of
SQL analytics performance on powerful clusters of GPU machines.
To achieve this, we implemented a distributed version of Tensor
Query Processor (TQP) [32]. With TQP, we took the nonconven-
tional decision of leveraging high-performance ML frameworks
(i.e., PyTorch) for running SQL analytics on GPUs. The key idea
was to leverage any system improvement in the ML space also for
SQL analytics [52]. In this paper, we follow a similar philosophy by
implementing data exchange operations using the core group com-
munication primitives used in AI training. We leverage NVIDIA and
AMD high-performance implementations of such primitives (i.e.,
NCCL [18] and RCCL [4]), and natively use their proprietary back-
end networks, as well as leveraging their algorithms for efficient
multi-GPU cross-machine data transfers.

Starting from input data partitioned and loaded in GPU HBMs,
we run all 22 TPC-H [96] queries at 1 TB scale in 0.53 seconds
in total using 40 GPUs (H100, 5 machines) and 3 TB scale in 1.3
seconds (Figure 1b). We can also complete all 22 queries at 1 TB
scale in 1.06 seconds on a single machine with 8 GPUs (MI300X).
This beats custom scale-up CPU machines fitting the workload
in RAM by over 60× [36, 37] and more for commodity scale-out
cloud-based hardware. This is just a snapshot in time of the achiev-
able performance with the hardware that we have access to. In
fact, and as we write, next-generation GPUs with even faster net-
work interconnect are being deployed in the cloud [12]. To address
how future-generation hardware and interconnects can impact end-
to-end performance, we also developed analytical models to get
insights into the expected performance as we continue to scale and
run TQP on new hardware. We expect the performance that we
can achieve on GPU clusters with fast interconnects to drastically
outpace CPU equivalents.

In summary, this paper makes the following contributions:
(1) We show how off-the-shelf group communications libraries
that are developed primarily for AI and HPC applications can be
adapted to be applied to the SQL analytics domain.
(2) We show how TQP can be easily extended to take advantage of
multiple GPUs across a cluster of machines coming from different
vendors, thereby enjoying ease of portability along with highly
competitive scale-up and scale-out performance.

(3) We demonstrate, for the first time, TPC-H 1 TB total query
performance of less than a second, and < 1.5 seconds at a 3 TB scale
using a cluster of multi-GPU machines in the cloud.
(4) To gain insights about scalability and extrapolate performance
to future hardware, we present analytical performance models of
the time-consuming shuffle and broadcast operations.
(5) We characterize TPC-H workload execution on a multi-GPU
cluster and analyze the effect of various factors on workload per-
formance, such as warm/cold run, broadcast implementation, data
skew, and data placement. The analysis gives valuable insights into
designing an efficient SQL analytics system for a multi-GPU cluster.

We believe that this paper firmly demonstrates the potential for
accelerating analytics at scale over multi-GPU clusters in the cloud.

The rest of the paper is organized as follows. We describe our dis-
tributed SQL query acceleration approach using the Tensor Query
Processor (TQP) and off-the-shelf collective communications li-
braries in Section 2. We present analytical performance models for
data exchange operations in Section 3, with experimental evidence
of scaling trends in Section 5. Section 4 lists our cluster configura-
tions. Sections 6 and 7 analyze terabyte-scale TPC-H performance
on standard (uniform) and skewed data, respectively, and explore
other factors contributing to the performance. Section 8 summa-
rizes related literature and Section 9 concludes the paper. Further
details are available in the extended online version [102].

2 APPROACH: DISTRIBUTED TQP
We extend and use TQP to accelerate SQL queries using multiple
GPUs. Our approach is to add data exchange operators to tensor
programs generated by TQP and use primitives provided by the
NVIDIA Collective Communications Library (NCCL) API to imple-
ment them. We describe each of these components in this section.

2.1 Background: Tensor Query Processor
Tensor Query Processor (TQP) [7, 32] accelerates analytical queries
by implementing relational operators using PyTorch’s tensor API.
By leveraging PyTorch, TQP can execute queries on specialized
hardware such as GPUs [29, 32] and APUs [23]. The advantage of
using PyTorch’s tensor API not only relies on the ease of portability
to diverse and rapidly evolving hardware platforms but also on tak-
ing advantage of any algorithm improvement coming from the ML
community, while maintaining a familiar programming interface.

TQP is composed by a set of utilities for (1) converting input
data into tensor format; and (2) a query compiler transforming
input queries into tensor programs. For the former, TQP supports
Pandas DataFrame [65], Parquet [28], Numpy [97], and CSV as input
formats. TQP also support integers, floating point as well as ASCII
string (in dictionary and value-encoded formats), and date inputs1.
For the latter, given an input query, TQP uses Apache Spark’s [109]
query optimizer (Catalyst) to generate an initial physical query
plan for single-node execution. TQP then tensorizes [32] the plan,
and compiles it into a tensor program that is fed with the input data
(in tensor format) to generate the query results. We reuse TQP’s
compilation stack in this work but add additional capabilities for
supporting distributed SQL query processing, as we describe next.

1Notably, decimals are not supported yet. Decimal columns are currently loaded as
floating-point numbers.
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2.2 Background: Data Exchange for Distributed
Query Processing

Data exchange is a costly operation, because it happens over net-
works having maximum bandwidths that can be an order of mag-
nitude (or more) lower than device-local HBM bandwidths. Thus,
distributed analytical systems strive to minimize data exchanges
and maximize local computations. Shuffle and broadcast are the
most common kinds of data exchange operations. In shuffle, each
process first applies the same partitioning function (based on one or
more keys/attributes of the table) to partition its data. The shuffle
operation then redistributes the partitions among the processes
so that each process has all partitions corresponding to the same
set of key values. In broadcast, each process scatters its part of the
distributed table to all other processes. At the end of the operation,
the entire table is replicated in all processes. While shuffle redis-
tributed data while keeping the total data across all participants
fixed, broadcast replicates data thereby increasing the total data
size across all participants. Broadcasts are useful for small tables
since they can enable local joins without needing the other table
to be partitioned on the join keys. Generating optimal query plans
for distributed execution requires knowledge of how the data is
partitioned across the processes [8, 11, 66, 109]. For example, a join
between two partitioned tables could proceed in one of following
ways: (1) If both are partitioned on the join keys, then join locally;
(2) Broadcast one of the tables and then join locally; (3) Partition
and shuffle both tables and then join locally.

2.3 Collective Communications Library
The open-source NVIDIA collective communication library (NCCL)
provides a variety of communication primitives between multiple
GPUs. These include collective communication involving all par-
ticipating GPUs (e.g., all-reduce) as well as point-to-point (p2p)
communication for send and receive operations. We use NCCL
primitives to implement the data exchange operations in TQP. This
approach has the following advantages.

• NCCL transparently handles various available interconnect tech-
nologies for GPU-GPU communications, such as NVLink, GPUDi-
rect RDMA over InfiniBand (IB), TCP/IP over Ethernet, etc. These
interconnects can be either intra-node (e.g., NVLink connects
GPUs local to a VM) or inter-nodes (e.g., RDMA over IB connects
remote GPUs not residing on the same node).

• NCCL optimizes data routing for the network topology and
chooses different routing algorithms for the underlying platform
as part of its bootstrapping process.

• NCCL’s APIs are supported by both NVIDIA andAMD. The AMD
implementation is named RCCL (ROCm Communication Collec-
tives Library) [4], but the APIs and semantics remain the same.
Thus, adopting NCCL enables ease of portability across vendors,
along with enjoying vendor-maintained improvements for new
hardware generations, which is similar to TQP’s motivation of
leveraging PyTorch’s API for implementing SQL operators.

We use a subset of NCCL operations to implement data exchange
operations in TQP. This includes collective and p2p operations, and
group calls (to optimize routing and reduce kernel invocations).

The reason why we need to use p2p operations is due to a mis-
match between NCCL collective APIs, which were developed pri-
marily for ML applications, and what is needed to implement data
exchange for distributed query execution. For example, collective
operations assume equal-sized data at each node (as is the case for
ML workloads). For SQL queries, this is restrictive since partitioned
data is not always perfectly balanced. This can happen both due
to skew in data distributions and having different selectivities of
filter operations at different nodes. One workaround could be to use
data padding to make the data sizes equal, but that would involve a
waste of GPU HBM capacity as well as network bandwidth.

To solve this mismatch between collective primitives, and dis-
tributed SQL processing, one can build them using the p2p NCCL
operations ncclSend and ncclRecv. These enable the construction
of more complex operations such as shuffle2, and also allow each
send-receive pair to have a different size, thereby offering more flex-
ibility. We implement the shuffle operation among 𝑁 GPUs using
𝑁 2 (including self-transfers) ncclSend and 𝑁 2 ncclRecv enclosed
within a ncclGroupStart and ncclGroupEnd. Algorithm 1 shows
the pseudo-code of the shuffle executing at each GPU.

Algorithm 1 Shuffle @𝑖

1: ncclGroupStart
2: for 𝑗 = 0 to 𝑁 − 1 do
3: ncclSend: 𝑖 → 𝑗

4: ncclRecv: 𝑖 ← 𝑗

5: end for
6: ncclGroupEnd

Algorithm 2 Broadcast @𝑖

1: ncclGroupStart
2: for 𝑗 = 0 to 𝑁 − 1 do
3: ncclBroadcast: recv

from 𝑗 and send if 𝑗 == 𝑖

4: end for
5: ncclGroupEnd

For broadcast operations, a similar approach of using a set of
p2p exchanges, although functionally sufficient, is not optimal in
performance since that sends the same data packets to the same
remote machine multiple times. For example, GPU 0 in machine
1 needs to send the same data twice to GPU 0 and 1 in machine
2 separately. Using the one-to-all broadcast operation in the com-
munication library, e.g., ncclBroadcast, on the other hand, may
avoid or reduce repeated transfers of the broadcasted data across
machines [76, 83]. As we will show in Section 7.1, the impact is
severe, particularly for multi-machine deployments where the net-
work bandwidth between machines is about an order of magnitude
lower with InfiniBand and about two orders of magnitude lower
with Ethernet compared to intra-machine inter-GPU (e.g., NVLink)
bandwidths. Hence, we use the one-to-all ncclBroadcast to imple-
ment the broadcast operation. Algorithm 2 shows the pseudo-code
of the broadcast executing at each GPU. The for loop is needed
since NCCL uses the same operation for both sending and receiving:
when 𝑖 == 𝑗 GPU 𝑖 will send, while all GPUs participating in the
same ncclBroadcast will be receiving from GPU 𝑖 .

The shuffle and broadcast operations are preceded by an informa-
tion exchange where the data sizes are exchanged between senders
and receivers. This allows the receivers to allocate receive buffers
accurately. Furthermore, since we exchange one column at a time,
knowledge of the incoming data sizes allows in-place construc-
tion of a contiguous tensor for each column, as needed by TQP for

2Note that shuffle could be expressed as MPI AllToAll operation. However, NCCL
doesn’t implement the AllToAll collective operation.
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performing operations on it. We achieve this by determining a start-
ing offset, for data incoming from each sender, in the contiguous
receive buffer for the column at the recipient. This information
exchange is very light-weight compared to the shuffle or broadcast
because only 𝑁 integers are sent from each GPU, where 𝑁 is the
total number of GPUs participating in the data exchange.

2.4 Distributed TQP
Let us now combine everything and discuss how we implemented
distributed query processing in TQP. As a distributed processing
model, we use data-parallel computing, with GPUs as the computa-
tional backends. The input data is partitioned between the GPUs in
the distributed system and loaded in their device memories (HBMs).
We run a TQP process for each GPU, with all the processes launched
as MPI (Message Passing Interface) [67] jobs by a distributed job
runner (e.g., mpirun). In distributed mode, each TQP process com-
putes using its assigned GPU on its local data, and it performs data
exchange with other TQP processes, when necessary, by moving
data directly between GPU HBMs wherever possible. To achieve
this, we modified the TQP compiler stack to automatically inject
data exchange operations (implemented as described in the previ-
ous section) into their compiled tensor programs before group by,
join operations, or for final aggregation.

Note that: (1) each TQP process executes the exact same tensor
program, the only difference is that each GPU reads a different
input data partition; (2) data exchange operations are managed
by the processes themselves and not orchestrated by a separate
“driver” process; (3) fault tolerance is based on re-execution (since
queries run at interactive speed). This is closer to how ML training
runs are executed, rather than how distributed analytical systems
work. Fundamentally, we are advocating not only for leveraging
ML frameworks (i.e., PyTorch and NCCL) for targeting hardware
accelerators and fast network interconnect, but also that we can
embrace the same computational model used for ML training.

3 ANALYTICAL PERFORMANCE MODELS
In this section, we will describe performance models that facilitate
our analysis of shuffle and broadcast operations on multiple GPUs
spanning one or more machines. The goal of these analyses is
twofold—to gain insights about the performance scalability of data
exchange operations, and to extrapolate performance impact with
different interconnects, larger cluster sizes, and next-generation
network technologies that are not yet available.

3.1 Model Description/Assumptions
Table 1: Notations.

k Number of GPUs per machine (or node, VM)
V Number of machines (or nodes, VMs)
N Total number of GPUs = 𝑘 ×𝑉
𝑩𝒈 Unidirectional inter-GPU bandwidth within each machine
𝑩𝒏 Unidirectional network bandwidth at each machine
S Total dataset size processed by the GPU cluster.
𝑮𝒊𝒋 The 𝑗-th GPU in the 𝑖-th machine.

𝒎𝒊𝒋→𝒑𝒒 The message sent from 𝐺𝑖 𝑗 to 𝐺𝑝𝑞 .

Table 1 describes the notations that we use in this paper. To be-
gin with, we focus on the case where we exchange a large amount

of data in the shuffle and broadcast operations because frequent
latency-bound small-sized data transfers are not common or expen-
sive in databases. Later, we also discuss how we adapt our models
for small message sizes. Moreover, we only model the data ex-
change among the GPUs—metadata exchanges prior to the shuffle
and broadcast (Section 2.3) are ignored.
• The system has 𝑉 machines and each machines has 𝑘 GPUs.

Machines are connected by the network (e.g., Ethernet, RDMA).
Each node can send and receive data to/from any other nodes.
Each node has outbound/inbound network bandwidth 𝐵𝑛 , hence
each GPU has a share of 𝐵𝑛/𝑘 network bandwidth.

• Within each machine, there are also pairwise connections be-
tween GPUs. Each GPU can send data to all other GPUs within
the same machine (i.e., local peers) at an aggregated rate of 𝐵𝑔 .

• The total dataset is 𝑆 in size. It is evenly distributed across 𝑁
GPUs, making the size of each GPU’s work set 𝑆/(𝑉𝑘). Later in
this section, we will model the effect of the data skew without
assuming uniform distribution.

• A message is what a GPU sends to another GPU during a shuffle
or broadcast operation.

• We assume that intra-node data transfer and inter-node data
transfer can happen concurrently.

• We define the throughput of the operation as the total dataset
size 𝑆 divided by the total time 𝑇 used to finish the operation.

3.2 Broadcast Scalability
Wemodel the broadcast by assuming it uses a ring-based algorithm,
which is true for throughput-optimized applications [42]. To ad-
dress the discrepancy in bandwidth between a GPU’s intra-VM link
(300-450 GB/sec) and its network (6.25-50 GB/sec), NCCL forms
multiple rings, each of which connects all GPUs and spans both
inter- and intra-node links. For example, in our H100+IB cluster
(Table 2), every two rings share every two NICs per node, and in
total 8 rings are formed. The rings become the most efficient when
𝐵𝑛 = 𝐵𝑔 , which means neither the inter- nor intra-VM interconnect
is underutilized. This approach essentially obliterates the hetero-
geneity of interconnects. Since the ring-based broadcast proceeds
in (𝑁 − 1) steps, and in each step, 𝑆/𝑁 data are transferred over
each hop of the ring, we can calculate the broadcast time as follows.

Tbroadcast = (𝑁 − 1)
𝑆/𝑁

min(𝐵𝑛, 𝐵𝑔)
, for 𝑉 > 1.

𝑆/𝑁 is the message size in the broadcast, which is the same
as that of each GPU’s work set. The throughput of the ring is
bound by the minimum of inter-VM and intra-VM interconnects,
i.e., min(𝐵𝑛, 𝐵𝑔). The throughput of broadcast can be calculated as

Thptbroadcast =
𝑁

𝑁 − 1 min(𝐵𝑛, 𝐵𝑔), for 𝑉 > 1. (1)

When 𝑉 = 1, since only the intra-VM links matter, the through-
put becomes 𝑁

𝑁−1𝐵𝑔 . The above equation implies that when we
add more nodes to the system (𝑉 ↑), the broadcast throughput will
decrease. In other words, the broadcast operation does not scale
with the number of nodes. Figure 2a shows the model-predicted
throughput when we increase the number of nodes for different net-
work bandwidths (𝐵𝑛). The throughput decreases with the number
of nodes and eventually converges. Notice how 800 GB/sec network
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Figure 2: Model-predicted throughput

will not give much better broadcast performance than a 400 GB/sec
because the intra-VM interconnects become the bottleneck.

3.3 Shuffle Scalability
The biggest difference between shuffle and broadcast is that the
point-to-point message size in the shuffle operation is 𝑆/(𝑉𝑘)2 be-
cause each pair of ncclSend/Recv primitives deals with only 1/(𝑉𝑘)
of the work set of a GPU whose size is 𝑆/(𝑉𝑘). Based on common
cluster configurations, we assume that the local sends are faster
than the remote sends. Therefore, the time of the shuffle operation
can be calculated as

𝑇 =
𝑆 (𝑉 − 1)𝑘2
(𝑉𝑘)2𝐵𝑛

=
𝑆 (𝑉 − 1)
𝑉 2𝐵𝑛

.

The throughput of the shuffle operation is therefore

Thptshuffle =
𝑉 2

𝑉 − 1𝐵𝑛 , where 𝑉 ≥ 2. (2)

When 𝑉 = 1, Thptshuffle = 𝑁 2

𝑁−1𝐵𝑔 . For 𝑉 > 1, Thptshuffle is an
increasing function of 𝑉 , which means that with more nodes, the
shuffle will become more efficient. Compared with Thptbroadcast,
shuffle is almost𝑉 times more efficient than the broadcast. Figure 2b
shows the model-predicted throughput when we increase the num-
ber of nodes for different network bandwidths (𝐵𝑛). For slower
networks, the throughput significantly drops when 𝑉 goes from
1 to 2. However, for 𝑉 ≥ 2, the throughput of shuffle consistently
increases with the number of machines. Moreover, the throughput
grows proportionally with the network bandwidth 𝐵𝑛 . Although
theoretically, the shuffle becomes more efficient with more nodes,
the cost of partitioning the data and transmitting more network
package headers could increase with more nodes.

3.4 Shuffle vs. Broadcast Competitiveness
To join the table 𝑅 and table 𝑆 , we can either broadcast 𝑅 (assuming
𝑅 is the smaller table) or shuffle both 𝑅 and 𝑆 . We represent the size
of a table as | · |. The time 𝑇𝑏 for broadcasting 𝑅 and the time 𝑇𝑠 for
shuffling both are then:

𝑇𝑏 = (𝑁 − 1) |𝑅 |
𝑁𝐵𝑛

,𝑇𝑠 =
𝑉 − 1
𝑉 2𝐵𝑛

( |𝑅 | + |𝑆 |).

For 𝑇𝑏 < 𝑇𝑠 , we need:
|𝑆 |
|𝑅 | >

𝑁 − 1
𝑁 − 𝑘 ·𝑉 − 1. (3)

For 𝑉 = 1, the condition for the broadcast-based join to outper-
form the shuffle-based join is |𝑆 |/|𝑅 | > 𝑁 − 1. If we assume a fixed

𝑘 , then more GPUs make shuffle more favorable. On the other hand,
when 𝑉 is small and |𝑆 | ≫ |𝑅 |, broadcast is preferred.

3.5 Modeling Skew
Data skew is omnipresent in database workloads, affecting not only
local processing per GPU but also data exchange. We model how
data skew could affect the broadcast and shuffle operations.

3.5.1 Broadcast. As mentioned in Section 3.2, NCCL form rings to
unify the bandwidth profiles of different links as much as possible.
In a ring, messages can be pipelined, which means a GPU can
stream out the message to the next hop while it is being received.
This brings the benefit that broadcast with a skewed initial data
placement does not cause certain links to be idle or under-utilized.
In conclusion, having data skew will not affect the broadcast as
long as the broadcast is bandwidth-bound.

3.5.2 Shuffle. The effect of skew on the shuffle performance de-
pends on the implementation of the communication library. An
ideal implementation should be able to monitor the traffic of each
NIC and leverage the high-bandwidth intra-node interconnect (e.g.,
NVLink) to route messages through idle local NICs. Consequently,
each GPU can utilize all NICs of its residing node to send/receive
messages to/from the network. This implies that data skew should
only be visible on a per-node level instead of a per-GPU level. The
total data sent and received through the network on any node i is

𝑆𝑖 =
∑︂

𝑗∈[0,𝑘 )

∑︂
𝑝∈[0,𝑉 )\{𝑖 }

∑︂
𝑞∈[0,𝑘 )

𝑚𝑖 𝑗→𝑝𝑞 (Send)

𝑅𝑖 =
∑︂

𝑗∈[0,𝑘 )

∑︂
𝑝∈[0,𝑉 )\{𝑖 }

∑︂
𝑞∈[0,𝑘 )

𝑚𝑝𝑞→𝑖 𝑗 (Receive).

The time of the shuffle operation is therefore

𝑇shuffle = max{𝑆0, ..., 𝑆𝑉 −1, 𝑅0, ..., 𝑅𝑉 −1}/𝐵𝑛 .
For brevity, we ignore potential data skew within the intra-node

interconnect domain; however, it should be fairly easy to extend
the model to account for it. In contrast to broadcast, data skew
does have an impact on the shuffle, even in the ideal case. NCCL
implementation’s PXN [70] optimization (enabled by default) brings
performance closer to the ideal, but falls short due to currently being
sender-side only and lacking dynamic message scheduling [55].

3.6 Small Message Sizes
So far, we have been assuming that the efficiency of transferring
a message (i.e., 𝐵𝑛 , 𝐵𝑔) is independent of the message size𝑚, and
therefore the throughput of the shuffle and broadcast is also agnostic
to message sizes. However, we observe in experiments that the
message size does have an impact on performance of both. To
address this, we extend our model by parameterizing 𝐵𝑛 and 𝐵𝑔
with the message size𝑚. We follow the Hockney model [101] and
assume the time to send a message via a link as 𝑡 = 𝐿 + 𝑐 ·𝑚, where
𝑐 corresponds to the time gap between sending each byte and 𝐿 is
the latency. Therefore, we can represent 𝐵𝑛 and 𝐵𝑔 as

𝐵𝑛 (𝑚) =
𝑚

𝐿𝑛 + 𝑐𝑛 ·𝑚
, 𝐵𝑔 (𝑚) =

𝑚

𝐿𝑔 + 𝑐𝑔 ·𝑚
.

To find the model parameters 𝑐𝑛, 𝑐𝑔, 𝐿𝑛, 𝐿𝑔 , we can fit our ana-
lytical models against our experiment measurements. Due to the
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completely different implementations, shuffle and broadcast are
fitted separately using the results from 𝑉 = 2.

4 TESTBED ANDWORKLOADS
4.1 Cluster Configuration
For this study, we use three clusters of multi-GPU Azure Virtual Ma-
chines (VMs). These clusters have GPUs from two vendors (NVIDIA,
AMD) and use different interconnect technologies (NVLink, Infinity
Fabric, Ethernet, InfiniBand) for communications between GPUs.
Table 2 lists the cluster configurations. We report unidirectional
bandwidths for all cases.
• Intra-VM: Communications between GPUs within the same VM
can use high-bandwidth interconnects—NVIDIA NVLink for each
VM in clusters 1 (A100) and 2 (H100), and AMD Infinity Fabric for
each VM in cluster 3 (MI300X). For both the A100 and H100 clusters,
the interconnect fabric is created with NVLinks and NVSwitches.
In each VM of the A100 cluster, each GPU has 12 outgoing (and
incoming) lanes, each supporting a bandwidth of up to 25 GB/sec,
providing an aggregate max. outgoing (and incoming) bandwidth
of 300 GB/sec. For H100, this increases to 18 outgoing (and incom-
ing) lanes with an aggregate max. unidirectional bandwidth of 450
GB/sec. In the MI300X cluster, each GPU has 7 lanes, each providing
up to 128 GB/sec bidirectional bandwidth, resulting in an aggregate
max. unidirectional bandwidth of 7 × 128/2 = 448 GB/sec.
• Inter-VM: All VMs have an Ethernet NIC providing connectivity
to other VMs. Additionally, every VM in the H100 and MI300X clus-
ters has 8 Mellanox NICs, one per GPU, each supporting InfiniBand
4x NDR (Next-Generation Rate) connectivity of up to 400 Gbits/sec.

4.2 Profiling Setup
We report the average execution time of queries, taken over 10 runs,
once each query’s input data is loaded into the HBM of all partic-
ipating GPUs. We take measurements after a warm-up phase, in
which each query has been run twice to warm up the device caches.
Our analyses are based on the input, output, and intermediate data
of the query execution fitting in the GPU HBM. This fits with our
goal of demonstrating the potential speedup opportunities of multi-
GPU clusters. This also represents scenarios of recurring queries,
or when data loaded earlier into GPU memory may remain cached.
We discuss the impact of data loading for cold runs in Section 7.4.

In the experiments, we break down the execution time into three
parts: compute, shuffle, and broadcast. Compute time refers to the
local execution time of each GPU. We measure the end-to-end
query execution time, and for each shuffle/broadcast operation, we
insert barriers before and after to obtain its time3. We calculate
the compute time by subtracting the communication time from
the query execution time. We use vendor-specific utilities (e.g.,
nvidia-smi) to monitor GPU memory occupancy during query runs.

4.3 Workloads
We use the 22 queries of the TPC-H benchmark in our study, on
both default (uniform) and skewed data. We run these queries on
the TPC-H dataset, which has a mostly uniform distribution of

3We don’t explicitly measure the reduction operations (ncclAllReduce) since these
have negligible overhead.

keys, for Scale Factors (SF) of 1000 and 3000. To study the impact
of data skew, we generate skewed data using the data generator
for the JCC-H [10] dataset, but use the TPC-H queries for a close
comparison with TPC-H query runs.

We pre-partition input tables based on keys to reduce shuffles of
leaf-level inputs. Since the two largest tables, lineitem and orders,
are joined in queries Q3, Q4, Q5, Q7, Q8, Q9, Q10, Q12, Q18, and
Q21, we partition lineitem by the foreign key, l_orderkey, so
that the distributed join can be performed locally on each GPU
without first requiring a data exchange operation. For partsupp,
we use ps_partkey, and for the remaining tables, their primary
keys, as the partitioning keys. Some queries, e.g., Q1 and Q6, do
not need or use key-based input partitioning.

4.4 TQP Setup
Selection of the optimal exchange operation requires knowledge of
table cardinalities (Section 3.4), as well as how data is pre-partitioned
(Section 4.3). Since in this work, we aim at showing the speedup
potential with multi-GPU acceleration, once distributed TQP gen-
erates the tensor programs, we further optimize them manually
(e.g., changing the data exchange operation, or the join ordering).
We leave the integration with a statistic-aware distributed query
optimizer as part of our future work.

The data exchanges involved both leaf tables (query inputs) and
intermediate results. In these counts, we exclude the final gather
operation for collecting partial results from the individual GPUs.
Having partitioned input tables helps to reduce the number of
shuffles. A different partitioning scheme would lead to a different
number of data exchange operations in the resulting query plans:
we discuss an example in Section 7.3.

5 DATA EXCHANGE PERFORMANCE
We develop microbenchmarks to measure the throughput of shuf-
fle and broadcast on our platforms under various settings. These
include varying the number of machines, data skew, and message
sizes. In addition, we validate our models with the measured per-
formance assuming that the message sizes are known.
Skew-free case. To demonstrate the power of our model, we com-
pare our model-predicted throughput for 𝑉 = 4 with the measured
throughput in Figure 3. To get the prediction, we first find the pa-
rameters 𝐿𝑛, 𝑐𝑛 (see Section 6.5) from 𝑉 = 2 by fitting. The results
show that our models have strong predictive power for both shuffle
and broadcast, for varyingmessage sizes, for different GPUs, and for
different network types. The implication of this is that we can use
our model to accurately predict the data exchange performance of
real query workloads given a cluster configuration. The prediction
provides insights into whether the user should scale out the cluster
to gain more performance. As we will see in Section 6.3, although
scaling out brings more parallelism, it also makes data exchange
less efficient due to smaller message sizes.
Skew case. To validate our models in the skew case, we introduce
skew to the initial data placement. Assuming GPUs𝐺0,𝐺1, ...,𝐺𝑁−1
have 𝑥, 𝑥+ 𝑓 𝑥, ..., 𝑥+(𝑁 −1) 𝑓 𝑥 data, respectively. Here, we call 𝑓 the
“skew gradient”. Varying 𝑓 produces different levels of skewness,
and when 𝑓 = 0, there is no skew. We fix the total dataset size to
be 𝑆 = 𝑁 × 1 GiB; therefore, for each 𝑓 , we need to find out 𝑥 . For
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Table 2: Cluster Configurations. Eth: Ethernet. IB: InfiniBand.

Cluster GPU Type HBM k V GPU Interconnect CPU type CPU CPU Price/hour
(GiB) Intra-VM Inter-VM Cores Mem (GiB) (USD)

1 NVIDIA A100 80

8

7 NVLink Eth: 1×50 Gbits/sec AMD EPYC

96

1800 32.77*300 GB/sec 7V12

2 NVIDIA H100 79.6 5 NVLink Eth: 1×100 Gbits/sec Intel Xeon 1900 98.32450 GB/sec IB: 8×400 Gbits/sec Platinum 8480C

3 AMD MI300X 191.5 4 Infinity Fabric Eth: 1×100 Gbits/sec Intel Xeon 1850 63.6448 GB/sec IB: 8×400 Gbits/sec Platinum 8480C
* This is the price for 8×200 Gbits/sec Infiniband. The Eth version, where we run our experiment, is not publicly listed.
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Figure 3: Model validation for the skew-free case. (V=4)

example, if 𝑓 = 1, 𝑉 = 4, 𝑘 = 8, then the first GPU will have around
62 MiB data, whereas the last GPU will have around 1.94 GiB data.
In contrast, if 𝑓 = 0, every GPU will have 1 GiB of data.

We measure the performance of broadcast for different 𝑉 and 𝑓 .
The result (Figure 4) shows that the throughput of broadcast is not
affected by the data skew, which agrees with our model.

In the shuffle case, on top of the initial data placement, we let
each GPU send the same amount of data to all of its receivers. In
this case, the last node sends the largest amount of data, and the
first node receives the largest amount of data. Figure 5a-5c shows
our modeled shuffle throughput in this case in comparison with
the actually measured throughput. We find the 𝐵𝑛 parameter from
fitting the 𝑓 = 0 data point. The result shows that our model also
captures the effect of skew very well. The result also implies that
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Figure 4: Broadcast + data skew.
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(d) Skew within VM only (V=4).

Figure 5: Shuffle + data skew.

the performance of shuffle degrades noticeably with the existence
of skew across VMs. According to our model, if the skew only exists
across GPUs but not VMs, the skew does not have an effect. We
further validate this claim by letting each GPU in each VM contain
𝑥, 𝑥 + 𝑓 𝑥, ..., 𝑥 + 7𝑓 𝑥 data so that there is only skew intra-VM but
not inter-VM. Results in Figure 5d show that the skew in this case
does not affect the shuffle performance.

6 TPC-H PERFORMANCE ANALYSIS
In this section, we discuss the times for TPC-H queries on 1 TB
and 3 TB datasets with distributed TQP. We analyze the results
from various angles, including run times (Section 6.1), time break-
down (Section 6.2), price performance (Section 6.4), data exchange
(Section 6.5), and memory utilization (Section 6.6). Furthermore,
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Figure 6: Workload performance (sum of run times for 22
queries) with different cluster configurations.

based on existing results, we project the performance for future
networks and scale out with more VMs (Section 6.3). The goal is
to characterize the execution of a classic SQL workload and offer
insights into the efficiency and bottlenecks of multi-GPU clusters.

6.1 Workload performance
Figure 6 shows overall workload performance, which is the sum
of the warm run times over all 22 TPC-H queries. We only show
cluster configurations where all queries can be run. For SF=1000,
this was possible on all cluster configurations, but SF=3000 required
𝑉 ≥ 4 for A100 and H100 VMs, and 𝑉 ≥ 2 for MI300X VMs.

We see that all queries with SF=1000 could be run in 1.1 seconds
using 8 GPUs in a single VM. With multiple VMs and more GPUs,
further speedups are possible. With 40 GPUs in 5 VMs with IB
interconnects, the total run time reduces to 0.53 seconds for SF=1000
and 1.3 seconds for SF=3000, representing more than two orders
of magnitude in speedup over published numbers for these scale
factors using CPU-only machines [36, 37]. Interestingly, the run
times are comparable between H100 and MI300X machines, even
though they are from different vendors.

The above speedups with multiple VMs are possible only with
high-bandwidth networks, such as the IB networks that we use.
With Ethernet connectivity, the times are significantly larger for
multi-VM configurations, e.g., 15.51 seconds for A100 and 8.39
seconds for H100 at 𝑉 = 5. We omit the numbers for MI300X
with Ethernet from the figure since the network configuration is
similar to that of the H100 cluster, and the single-VM performances
are also similar. Multi-VM configurations without high-bandwidth
interconnects only increase run time and costs, and thus are not an
efficient setup for these workloads.

6.2 Time breakdown
Figure 7 shows the breakdown of workload run time (sum of run
times of the 22 queries) into compute, shuffle, and broadcast compo-
nents. For the multi-VM InfiniBand configurations, we only show
breakdowns for the H100 cluster since the network configuration
and total run times for the MI300X cluster are similar.

If only a single VM is used (8×1 configuration), then the com-
pute time dominates. As the number of VMs (𝑉 ) increases, shuffle
and broadcast times become major contributors to overall time.
This is because of the relatively low inter-VM network bandwidths
compared to intra-VM NVLink bandwidths—two orders of mag-
nitude lower for Ethernet and one order of magnitude lower for

InfiniBand—which severely impact the performance of data ex-
change operations. For 5 VMs (8×5 configuration), they contribute
55.1%, 92.3%, and 94.8% of times forH100+IB, H100+Eth, andA100+Eth
configurations. The significantly lower-bandwidth Ethernet NICs
on the A100 VMs cause data exchanges to take the longest time
on the A100 cluster. The time breakdowns highlight the critical
importance of network bandwidth for the scale-out performance
of distributed GPU-based analytical query processing.

Between shuffle and broadcast, the latter dominates as we scale
out by increasing 𝑉 . For example, for the A100+Eth, shuffle and
broadcast contribute 34.5% and 61% respectively to the overall time
for 𝑉 = 7, but 36.4% and 55.4% for 𝑉 = 2. For H100+IB configura-
tions, they contribute 11.3% and 38.7% for 𝑉 = 5, and 10.2% and
16.5% for𝑉 = 2. This trend is due to the poor scalability of broadcast
with 𝑉 compared to shuffle, as we discussed in Section 3.

Figure 8 shows a breakdown of total run times for TPC-H SF=3000,
on the A100 and H100 clusters for values of 𝑉 ≥ 4 where all 22
queries were completed. Since the MI300X GPUs have more HBM,
we can run all 22 queries on the MI300X cluster for 𝑉 ≥ 2. Similar
to SF=1000 breakdowns, these breakdowns also show the very sig-
nificant impact of network performance on shuffles and broadcasts,
and consequently, on overall workload performance.

We also note the run time scales sub-linearly with the increase in
scale factor. For the H100+IB configuration, the run time increased
by 2.7× and 2.5× for𝑉 = 4 and𝑉 = 5 respectively, compared to the
corresponding times for SF=1000.

6.3 Performance Projection
We project the performance of TPC-H 1TB for an increasing number
of machines (𝑉 ) of Cluster 2 with IB, using our analytical scalability
models for shuffle and broadcast. One of the most important goals of
our modeling effort in Section 3 is to help users build an expectation
on how the TPC-H performance will change before they decide to
scale out. We discuss two different methods of predicting the TPC-
H performance, “best-accuracy” and “best-effort”. Both utilize our
analytical models in the same way, and the only difference is how
they predict the compute time. The “best-accuracy” method predicts
the compute time by fitting the five measurements of compute time
from 𝑉 = 1 to 5 into a power model, Compute = 𝑎 × 𝑁𝑏 (−1 <

𝑏 < 0), which captures the sub-linearity. However, this requires
the user to run the TPC-H on more than one machine, which is
potentially costly and unavailable. To solve this, the “best-effort”
method only uses the compute time at𝑉 = 1 and assumes a perfect
linear scaling of the compute time with respect to 𝑉 .

To project the shuffle and broadcast time in both methods, we
leverage (1) the workset size of each shuffle and broadcast and
(2) the 𝑐𝑛, 𝑐𝑔, 𝐿𝑛, 𝐿𝑔 constants obtained from the microbenchmarks
(𝑉 = 1, 2), which are essential to account for small message sizes.
We argue that these are reasonable and accessible inputs to our
models: (1) can be obtained by running the queries for 𝑉 = 1,
and (2) can be obtained from fact sheets or published literature.
(Projection I) This vanilla approach ignores the effect of message
sizes and uses the 𝐵𝑛 and 𝐵𝑔 in Table 2 to calculate the throughput
of shuffle and broadcast according to Equation 1 and 2. Since in
real systems the theoretical peak bandwidth of a link cannot be
attained, we normalize our predicted performance by making it
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Figure 7: 22-query Total Time Breakdown. TPC-H, SF=1000. (Each bar from bottom up: compute, shuffle, and broadcast.)
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Figure 8: 22-query Total Time Breakdown. TPC-H, SF=3000.

2 4 6 8 10 12 14 16 18 20
V

0.0
0.2
0.4
0.6
0.8
1.0
1.2
Total Time (sec)

Vanilla Model (I)
+Small Msg (II)
+Small Msg+Misalignment (III)
Measured

(a) Models for TPC-H projections.

1 2 5 10 20
V

0.0
0.2
0.4
0.6
0.8
1.0

Time (sec)
Compute
Broadcast
Shuffle

(b) Project breakdown.

Figure 9: Project TPC-H performance with our models.
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agree with the measured performance at 𝑉 = 1. (Projection II)
This approach (“+Small Msg”) takes the average message size of
each shuffle and broadcast as input to 𝐵𝑛 (𝑚) and 𝐵𝑔 (𝑚) and then
applies Equation 1 and 2. (Projection III) This approach (“+Small
Msg+Misalignment”) considers yet another influential factor that
is often seen in real-world workloads, namely misaligned start
addresses of send/receive buffers. As shown in Figure 12, if the
starting addresses of the send or receive buffer are not aligned at 16
bytes, the performance will degenerate substantially in some cases.

Figure 9a shows the predicted time of TPC-H using “best-accuracy”.
Due to a lack of fine-grained message-size-based modeling, Pro-
jection I does not capture the trend of the performance well and is
expected to deviate further away as 𝑉 continues to increase. How-
ever, Projection I does reflect how the performance would look if
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Figure 12: Effect of misalignment on shuffle and broadcast.

the data communication is less sensitive to message sizes. Another
merit is that it also works for the interconnects that we have not
studied with microbenchmarks. Although Projection II captures
the trend better than the vanilla approach, it consistently underesti-
mates performance due to its ignorance of misalignment. The best
approach (Projection III) very accurately models the TPC-H per-
formance. According to it, adding more machines will not improve
the performance for 𝑉 > 6. Figure 9b shows how the performance
breakdown looks when increasing 𝑉 according to Projection III.
As compute time drops with more machines, broadcast time in-
creases consistently due to two factors. First, broadcast becomes
less efficient with more machines according to Equation 1. Second,
messages become smaller and cannot efficiently utilize the links.
Unlike broadcast, shuffle benefits from more machines (Equation 2);
however, according to our prediction, the shuffle performance will
eventually be dragged down by the small message sizes.

Figure 10 shows the projection by the “best-effort” (using Pro-
jection III). It slightly underestimates the performance because
the compute cannot scale perfectly linearly, otherwise it provides
a very close projection to “best-accuracy” (using Projection III).
This means even with the performance of 𝑉 = 1, we can reliably
predict the performance of TPC-H for a large number of machines!

6.4 Price-Performance
Although the workload performance is lower on the A100 VMs com-
pared to that on the H100 andMI300X VMs, they have an advantage
from a price-performance perspective. Table 2 lists the hourly price
of one machine of different clusters. Currently (as of this writing,
March 2025), the Azure pay-as-you-go pricing [68] for single eight-
GPU VMs is around 3× and 1.94× higher for the H100 and MI300X
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VMs compared to that for the A100 VMs. Figure 11 shows the price
performance of each cluster when running SF=1000. The price per-
formance is calculated as the “query-per-second” (QPS) per dollar.
Since our A100 cluster does not have InfiniBand connectivity be-
tween VMs, we use the performance projections (vanilla approach)
discussed in Section 6.3 to estimate performance for that, assuming
8×200 Gbits/sec InfiniBand NICs per A100 VM. The result shows
that runs for TPC-H SF=1000 on a single eight-GPU A100 VM have
1.72× and 1.05× better QPS/$ respectively compared to the QPS/$
on the H100 and MI300X VMs. For multi-VM price-performance,
we find that for 𝑉 = 4, A100+8×200 Gbits/sec has 1.25× better and
0.77× worse QPS/$ compared to 4 VMs of H100 and MI300X re-
spectively, both of which use 8×400 Gbits/sec InfiniBand NICs per
VM. We can conclude that MI300X VMs are priced competitively,
as they have performance similar to that of the H100 VMs, but are
currently ∼35% less expensive than them.

6.5 Message sizes for data exchange
Figure 13 shows the distribution of inter-GPU message sizes for
broadcasts and shuffles, over all the 22 queries, along with the 80th
percentile values. For these workloads, most of the messages are
at most a few hundred MiBs and usually much smaller, e.g., for
𝑉 = 4, 80% of shuffles and broadcasts are smaller than 7 MiB and 36
MiB, respectively for SF=1000, and 21 MiB and 108 MiB for SF=3000.
The largest message sizes occur for 𝑉 = 1. These are 179 MiB and
191 MiB for shuffles and broadcasts at SF=1000. The message sizes
increase with dataset size, e.g., up to 537 MiB for shuffles in Q22 at
SF=3000 (𝑉 = 1). They also increase with data skew, which we will
discuss further in Section 7.2.

For both message types, increasing 𝑉 reduces message sizes,
but the reduction is larger for shuffles than for broadcasts due to
their inverse quadratic scaling with 𝑁 = 𝑉 × 𝑘 rather than the
inverse linear scaling for broadcasts (as we discussed in Section 3).
Although theoretically, this should result in lower network over-
heads with increasing 𝑉 , smaller messages utilize the bandwidth
less effectively, as we showed in Section 5, due to protocol and ker-
nel launch overheads, thereby preventing a proportional reduction
in per-message network overheads with scale out.

6.6 Memory Occupancy
Compared to main memory in high-end servers, single GPUs have
much smaller HBM capacity, thereby limiting the largest dataset
size that can be kept resident on each GPU. Using multiple GPUs
per machine alleviates, but does not remove, this bottleneck. In
our setup, we run queries with all data resident in the GPU HBMs,
and do not spill or otherwise transfer data between the GPUs and
main/external memory or storage. A query execution will fail if the
peak memory consumption exceeds the HBM capacity at runtime.
While all queries for SF=1000 finish with 𝑉 ≥ 1 on any cluster,
SF=3000 requires 𝑉 ≥ 4 for the A100/H100 clusters, but 𝑉 ≥ 2 is
sufficient for the MI300X cluster due to the larger HBM capacity.

Figure 14 shows the distributions, along with the 80th percentiles,
of peak per-GPU HBM occupancy on the A100/H100 GPUs during
runs of all the 22 queries. The peak occupancy is affected by the size
of the input dataset and intermediate results, and the space needed
by GPU kernels and the runtime scheduler. The peak increases with
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Figure 13: Message size distribution for all running queries.
Max. message size decreases as 𝑉 increases.
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Figure 14: Distribution of peak GPU memory occupancy of
all running queries. Occupancy decreases as 𝑉 increases.

the scale factor, e.g., the 80th percentile increases from 17.8 GiB
for SF=1000 to 49.8 GiB for SF=3000, and decreases with 𝑉 , e.g.,
the 80th percentile for SF=1000 decreases from 59.2 GiB for 𝑉 = 1
to 11.8 GiB for 𝑉 = 7, both due to the associated changes in the
per-partition data size for each GPU.

One difference inmemory consumption between single-GPU and
multi-GPU query execution is that additional space is needed for
the latter to create partitioned inputs for shuffle operations. This is
not much in our setup since, for this workload, the shuffle message
sizes are small (as we discussed in Section 6.5) and the tables do
not have too many columns. Memory needs for partitioning can
be reduced by partitioning one column at a time for shuffling and
reusing the memory for the next column.

6.7 Comparison with other Databases
In this section, we compare our system with two popular database
systems, DuckDB (CPU-based) and HeavyDB (GPU-based).

We run DuckDB v1.3.2 on Cluster 2 (Table 2), which has 96 CPU
cores and 1900 GiB memory. For each query, we do 10 warmup runs,
then measure the median runtime of 10 subsequent runs. For TPC-
H SF=1000, DuckDB takes 121 seconds, two orders of magnitude
slower than our result for 𝑉 = 1 on Cluster 2. Assuming perfect
scaling with 𝑉 , DuckDB would still need at least 24.2 seconds (plus
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Figure 15: Memory utilization for TPC-H and JCC-H (1 TB).

communication overheads) with 𝑉 = 5 compared to 0.53 seconds
in our case. For TPC-H SF=100, DuckDB spends 10.7 seconds. In
contrast, our system spends 0.13 seconds using eight H100 GPUs
in a single VM (0.59 seconds using a single H100 GPU). On a 32×-
cheaper CPU-only VM with 64 vCPUs (VM type: D64s v5, 32 cores,
$3.072/hr), DuckDB needs 13.1 seconds for SF=100, thus allowing
us a performance advantage of over two orders of magnitude, and
a QPS/$ advantage of over 3× for SF=100 using eight H100 GPUs.

For HeavyDB4, we use their published TPC-H performance num-
bers [34]. On a GH200 machine, which contains a single H100 GPU,
HeavyDB takes 3.9 seconds (without Q21) for SF=100. Assuming
perfect scaling, it would need at least 0.49 seconds with eight GPUs,
leaving us with a performance advantage of at least 3.75×.

7 PERFORMANCE SENSITIVITY
We now discuss how naive broadcast implementations (Section 7.1),
skewed data distributions (Section 7.2), sub-optimally partitioned
input data (Section 7.3), and data access from host memory (Section
7.4) can impact the query performance.

7.1 Collective vs point-to-point broadcasts
In Section 2, we emphasized that broadcast needs to be done with
a collective operation rather than with a set of point-to-point (p2p)
operations for better performance. Here, we detail the impact of
p2p-based broadcast on the performance of TPC-H. Both imple-
mentations produce similar performance at 𝑉 = 1. However, the
negative impact of p2p-based broadcast increases with𝑉 . The slow-
down is 1.6×, 1.2× at 𝑉 = 2, but 2.2×, 1.3× at 𝑉 = 5 for H100+Eth
and H100+IB respectively.

7.2 Uniform vs Skewed inputs
The TPC-H dataset has a largely uniform distribution of data values
to table keys [10]. This leads to the partitioned table sizes on the
different GPUs being largely similar. To test scenarios involving
skewed data, we use the JCC-H dataset with the TPC-H queries.
Memory utilization and message sizes. Figure 15a shows the
distribution of per-GPU peak memory occupancies of 21 queries5
for SF=1000 with 𝑉 = 5. In contrast, we also show the distribution
for these 21 queries on TPC-H for 𝑉 = 5. The imbalance caused by
the data skew results in more HBM being used on some GPUs, while
some other GPUs’ HBM remains under-utilized. The 80th percentile
and the max. peak memory used are 46.8 and 56.9 GiB, respectively,

4We were unable to download the enterprise version of HeavyDB, and found that the
available version was slower than published numbers.
5We exclude Q18 since it currently produces incorrect results for JCC-H.
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Figure 16: Time breakdown comparison. (V=5)

for JCC-H, but 14.5 GiB and 21.8 GiB for TPC-H 1TB. In Figure 15b,
we show the imbalance of memory utilization among GPUs. For
each query, we calculate the standard deviation of all GPUs’memory
utilization and report the average of all queries. The results indicate
that JCC-H causes a severely uneven workload distribution among
GPUs. A query fails if the memory required exceeds the available
HBM capacity on even a single GPU. The A100/H100 clusters need
𝑉 ≥ 5 to run these queries, while theMI300X cluster needs𝑉 ≥ 3. In
terms of the message size distribution (not shown), JCC-H 1 TB has
a much longer tail than TPC-H 1 TB for the shuffle, whereas the two
benchmarks have very similar distributions for the broadcast. The
max. message size in broadcast operation for both benchmarks is
38.7 MiB. In contrast, the max. message size in the shuffle operation
is 244 MiB and 10 MiB for JCC-H and TPC-H, respectively.
Per-query analysis. Several queries severely suffer from the skew
introduced in JCC-H, as shown in Figure 16. The figure details where
the time is spent in each benchmark. The two main contributing
factors to slower execution are compute and shuffle. In Q4, the
lineitem table is ill-partitioned based on l_orderkey, leading to
some GPUs processing almost 7× more data than others. Worse
still, due to the imbalance, some GPUs need to build a hash table
with around 450M keys, far exceeding the problem size that a hash
join can efficiently handle [103]. In Q20, two GPUs in the same
VM needs to send around 7× more data when shuffling lineitem
to join with partsupp. Moreover, some GPUs also receive almost
11× more data than others due to a poor partition function. As
discussed in Section 3 and Section 5, shuffle can be affected by such
a skew, resulting in a sheer increase of shuffle time. Even after
shuffling, the lineitem table is still distributed in an unbalanced
manner, which causes the subsequent join to be slower. Q9 sees
a significant increase in both compute and shuffle. The shuffle of
partsupp takes longer due to the skew in initial data distribution
and the partition function. The compute is slowed down by a series
of joins that stress only some GPUs. In contrast, the broadcast is
not affected by the skew even though the largest message size in
the broadcast is almost 15× larger than the smallest.
DuckDB comparison.We run the same JCC-H benchmark (SF=1000)
with DuckDB on a single machine of our Cluster 2. Similar to Sec-
tion 6.7, we report the median time of warm runs. It takes DuckDB
108.34 seconds to finish 22 queries, 67x slower than our system
(1.62 seconds, 𝑉 = 5, excluding Q185).

7.3 Partitioned vs non-partitioned inputs
Our performance results so far are for query runs on appropri-
ately partitioned input data that reduces/avoids shuffles on large
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input tables. Changing the partitioning scheme may require corre-
sponding changes to the query plan for functional correctness and
result in a different run time for the query. Here, we investigate its
impact using Q12 as an example. This query filters lineitem by
applying a predicate and joins with orders. Our default plan does
not need any data exchange operations for this query since the
input tables (lineitem, orders) are partitioned by their join keys.
We consider the following alternative query plans when neither
table is partitioned on these keys. Pa: Shuffle lineitem (filtered)
on l_partkey and orders on o_partkey, then do the join. Pb:
Broadcast lineitem (filtered), then join with orders.

Figure 17: Q12 time using different plans (Cluster 2)

Figure 17 shows the run times of Q12 for TPC-H SF=1000 on the
H100 cluster with a different number of nodes (𝑉 ). The default plan,
which assumes already-partitioned data on join keys and avoids
data exchanges, was the best. Plan Pa was the worst, while Pb
came second. As already discussed, broadcasts can be more efficient
than shuffles, as is the case here. Pa gets more competitive with
more nodes due to the faster (quadratic) reduction of message sizes
compared to the linear reduction for broadcast (see Section 3).

7.4 Warm vs cold runs
The performance numbers that we presented so far are for warm
runs with the input data already loaded in the GPU HBMs. For cold
runs, data needs to be moved from the main memory over the CPU-
GPU PCIe bus. On the H100 multi-GPU machines, this can be done
with an aggregate bandwidth of 440 GB/s (8 × 55) over the 8 PCIe
gen5 buses (theoretical max. of 8 × 63 GB/s). The total run time for
the 22 queries for TPC-H 1TB using one H100 VM increases from
1.13s to 11.4s for cold runs, which is still more than 7× faster than
CPU-only warm execution [37]. This is the worst-case scenario,
as, in practice, some of the input columns may be cached from
prior query executions, thereby not incurring the loading overhead.
With multi-machine clusters, the data loading time drops linearly
with the number of machines (𝑉 ) assuming that the input data
is uniformly partitioned and that the data loads on all machines
are initiated in parallel. Other recent architectures [71, 72] replace
the CPU-GPU PCIe with a high-bandwidth interconnect. Thus,
like prior studies [47], we foresee data loading as not being the
bottleneck anymore in the future. Additional overheads affecting
cold run times are query compilation overheads, which are query
dependent [32], but can be mitigated using a query plan cache.

8 RELATEDWORK
Distributed analytical databases. There is a long history of re-
search and development of distributed databases for data analyt-
ics [1, 6, 8, 24, 66, 79, 109]. All of these systems only use the CPUs

for data processing and many adopt the Massively Parallel Pro-
cessing (MPP) paradigm for scalability. Our work adopts MPP to
construct a GPU-based distributed analytical database.
Single-GPU query processing.Numerous works have studied dif-
ferent aspects of single-GPU-based query processing, for example,
implementation and optimization [7, 26, 29, 32, 40, 41, 48, 49, 53, 58,
77, 81, 82, 88, 90, 92, 94, 103, 105], data placement and caching [106],
fast interconnect technologies [61, 62], optimizing storage I/O [9,
95], data compression [35, 43, 89], system integration [45, 46, 51, 69],
performance analysis and surveys [14, 47, 73, 80, 91, 108], and so
on. These techniques are orthogonal to our work but are beneficial
in improving the efficiency of individual GPUs in our system.
Multi-GPU query processing.Many works [30, 31, 63, 64, 74, 93]
have studied the implementation of database operators on multiple
GPUs. HetExchange [16] is a database execution model that can
exploit parallelism across multi-core CPUs and multi-GPUs. Yuan
et al. [107] uses multiple GPUs to address the CPU-GPU PCIe bot-
tleneck. Yogatama et al. [104] designs a hybrid CPU and multi-GPU
query engine. The above work either does not consider a multi-
node GPU cluster or does not present full database systems that
can complete large-scale TPC-H benchmarks. Our work studies
the most general multi-GPU-multi-node case with different GPU
models from different vendors and various network technologies.
Some commercial systems [5, 25, 33, 78] also support data analytics
on multi-GPU systems. Compared to them, we present an in-depth
analysis of the TPC-H and JCC-H workloads in addition to end-to-
end query runtime. In terms of system design, we advocate the use
of ML-style processing with ML-driven high-performance libraries.
Multi-GPU communication.Many previous works [13, 22, 39, 44,
50, 87, 98] provide alternative communication libraries to NCCL and
RCCL. Weingram et al. [100] compares the state-of-the-art collec-
tive communication libraries. Someworks [38, 57, 75] evaluate GPU-
interconnects and networks. Others [15, 27, 55, 56, 60, 85, 86, 99]
optimize and/or model certain collective communication primitives,
such as all-reduce. Universal Communication X (UCX) [87] and
NVSHMEM [21] are other interconnect-agnostic frameworks for
multi-GPU communications. To the best of our knowledge, we are
the first to model and optimize the inter-GPU communication for
database applications, show how these ML-oriented communica-
tion libraries can be used for databases, and demonstrate how much
time inter-GPU communication takes up in query processing.

9 CONCLUSION
We present a distributed implementation of TQP leveraging group
communication libraries to process tera-byte scale TPC-H work-
loads on multi-GPU clusters. Our approach allows for seamless
portability across different GPU models (A100, H100, and MI300X)
and network technologies (Ethernet, Infiniband, NVLink, Infinity
Fabric). Our experimental evaluation shows that distributed TQP
yields very competitive performance results for TPC-H 1 TB and 3
TB scale factors, up to two orders of magnitude faster than public
CPU-server results. To better understand the performance, we de-
velop analytical models for shuffle and broadcast operations, and
conduct a detailed analysis of TPC-H workloads. We believe that
this work unveils the potential of multi-GPU in the SQL analytics
domain, and provides researchers and practitioners with valuable
insights into how to build an efficient multi-GPU database system.
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