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Abstract
Apache Iceberg is an open source table format that has recently gained a lot of attention in the
big data world. Managed under Apache Software Foundation, this project has fast become one
of the industry favorites to solve some unique and complex big data problems. It is a disruptive
and transformative technology which is redefining the landscape of large scale data
management. Though this technology belongs in the realm of the data world, it provides
unfamiliar capabilities compared to traditional data oriented technologies. As organizations
continue to strive for more scalable, cost-effective, performant and reliable ways to handle data,
Iceberg sits at the forefront of this to fulfill the expectation. In this paper, we begin by introducing
Apache Iceberg and the numerous technical capabilities that make it unique. We discuss its
architecture in detail to elucidate how it is designed to accomplish these unique capabilities. We
deep dive into how this tool provides flexibility in solving different use cases, its interoperability,
the cost savings opportunity it provides and why it has made its place as an attractive tool in the
toolbox of organizations. We also discuss about a few other tools which perform similar jobs in
this niche technology landscape and compare their features, strengths and weaknesses with
Iceberg. We end the discussion with some future research opportunities that may address a few
current limitations of Iceberg.

1. Introduction
It can be challenging to provide a proper definition of Iceberg to someone who has never
encountered it before. While it most certainly is a technology about data, it is distinct from other
traditional data-oriented technologies. Someone unfamiliar with Iceberg might ask, is it a
database, is it a data warehouse, or is it some other form of database technology like the data
lake of the big data world or is it the latest data buzzword in the industry “lakehouse”? The
answer is it is neither of those.

Iceberg is actually just a “table format”. It doesn’t provide storage, it doesn’t provide a compute
engine either. Its domain of use cases are two fold. First, it allows several compute engines like
Spark [1], Flink [2], Hive [3] etc to work simultaneously with the Iceberg tables [4]. Secondly,
together with a modern data processing engine, Iceberg helps in implementing the concept
“data lakehouse”, a hybrid big data technology that leverages the best out of data warehouse
and data lake.

Iceberg is a technology that relies on and works in conjunction with files of certain formats.
Those file types that Iceberg depends on contain the actual data of a system or application.
What Iceberg does is, it provides an abstraction layer to access the data efficiently stored in
those data files. Iceberg accomplishes this by simply creating and maintaining metadata about
the data files and intelligently creating, purging the data files behind the scene for efficient



access. It provides a table like view of the data stored in the raw data files and hence the name
“table format”. The consumer of the data, whether human or machine, interacts with Iceberg and
achieves performance, transactions and several other benefits of data access without knowing
anything about the underlying functionalities and complexities of the implementation.

2. Open File Format
Before we delve deeper into Iceberg, we have to take a step back and discuss the data file
formats leveraged by Iceberg under the hood. The data files in this context are not traditional file
formats like CSV, Text or JSON that have been used historically for data extraction, ingestion
and consumption purposes. These modern data files fall under a specific category called Open
File Format. These Open File Format data types were invented almost a decade ago to support
big data platforms. The motivation behind this open format was to support interoperability
across multiple big data engines, avoid file copies, reduce storage cost and provide
performance efficiency for data access.

Although several such file formats exist, they can primarily be categorized into two classes - row
oriented file format and column oriented file format. The row oriented formats are the traditional
types in the database-management-system (DBMS) world. The column oriented formats were
introduced in big data systems primarily to achieve high performance [13]. The most common
ones are Avro [8], Parquet [7], ORC [6] and Arrow [5]. Avro is a row oriented file format whereas
Parquet and ORC are column oriented. Arrow is newer among all of these and it is an
in-memory file format. Avro is the oldest in this lot and was discovered in 2009 as part of
Hadoop. The ORC(Optimized Record Columnar) file was introduced by Meta in 2013. Parquet
came out pretty much at the same time as the joint venture of Twitter and Cloudera [9]. Arrow
was discovered in 2016.

Among these 4 formats, Parquet and ORC are more relevant in the context of Iceberg.
Currently, Avro is less popular in big data solutions and its presence is mostly limited to Apache
Kafka [11] streaming use cases. However Iceberg still supports Avro as one of its underlying file
formats. Arrow on the other hand being an in memory is not a relevant file format for Iceberg
yet. Outside of Iceberg, as general purpose file format, both Parquet and ORC are popular and
used by multiple compute engines. Spark & Impala’s favorite choice is Parquet, whereas ORC is
favored by Hive [12].

Architecturally the file formats Parquet and ORC use compression(block compression by
default) and encoding techniques to optimize storage as well as performance. They both use
the standard online-analytical-processing(OLAP) compression techniques - dictionary encoding,
run-length-encoding(RLE) and bitpacking [9].

The Open File Format was invented to solve several problems for big data analytics use cases
which were not solvale using the traditional file formats such as CSV, TEXT, JSON or XML.

● Efficient storage and compression - big data applications typically contain enormous
volumes of data that require huge storage space. These file formats (Parquet, ORC)



store data efficiently by implementing compression and encoding techniques to reduce
infrastructure overhead as well as cost.

● Improved query performance - due to columnar storage architecture, queries often
require retrieving data for a subset of the attributes, improving query performance to a
great extent.

● Interoperability across systems - the file formats are of open standard and
consumable by multiple big data engines like Spark, Hive, Impala etc. By storing the file
only in one format (Parquet or ORC), multiple engines can operate on the data in parallel
thus eliminating the need for storing data in multiple formats, reducing cost as well as
storage space.

● Data integrity - the file formats facilitate data validation to prevent errors and thus
improving integrity of the data [15].

3. Open Table Format
Even though Open File Format such as Parquet/ORC solved a lot of problems in big data
architecture as mentioned in the above section, there were additional problems that remained
intractable [17]. As the data files were stored as independent units, they didn't provide a
consolidated tabular view. As a result, query engines were unable to determine which files
corresponded to a table. There were some other major problems as well.

● The files do not allow change in schema.
● Time travel over data is not possible.
● Updates are not well supported. If updates are made to multiple files, they are not

atomic, ending up causing partial updates in case of failures which are difficult to
rollback.

Open Table Format solves this problem by providing a metadata layer which is a set of files that
contains information about the data files stored in Parquet/ORC/Avro etc formats. Query engine
talks to the Open Table Format files which abstracts the data file layer and solves the limitations
of the Open File Format architecture. Open Table Format provides the storage structure only by
using the metadata layer, and is not a storage or a compute engine. The most common
table-formats are Iceberg, Delta Lake and Hudi. The metadata implementation architecture
differs for them but they all encapsulate the data files complexity and provide an abstraction
layer for query engines. Iceberg implements metadata in a hierarchical manner while Delta Lake
and Hudi implements tabular format metadata.

Hive is actually the first generation table-format which came before the three aforementioned
table formats. Hive attempted to implement table format in HDFS without a metadata layer but
ran into issues with atomicity problems and eventual consistency. Hudi and Iceberg was
released in 2018, Delta Lake came a year later in 2019.

The key features provided by Open Table Format are CRUD (Create-Read-Update-Delete)
operations, ACID(Atomicity-Consistency-Isolation-Durability) transactions, schema evolution,
time travel and significant performance improvement in read as well as write operation, by



employing various techniques under the hood [16, 17, 18]. As an example, the CRUD, ACID
transactions are implemented by using the Open File Format data files (Parquet/ORC) as
immutable file formats. The Open Table Format implementations create new data files when a
change request is made and keeps the original file intact. This approach also allows time travel
of the data as older versions of the data files exist in the storage system.

4. Data Warehouse, Data Lake and Data Lakehouse
Even though Iceberg or other table formats can be accessed by several processing engines for
general purpose big data use cases, its usage is most prominent in the modern lakehouse
pattern and is rapidly gaining popularity. As lakehouse itself is a fairly new concept in big data,
this section discusses the evolving world of big data analytics that brought us into the era of
table format based lakehouse implementation.

4.1 Data Warehouse
In the realm of traditional relational-database-management-system (RDBMS), two types of data
platforms have been in use by the industry - online-transaction-processing (OLTP) systems and
online-analytical-processing (OLAP) systems. The OLAP systems are typically called data
warehouses, where vast amounts of data are brought in from different OLTP databases of the
organization for consolidated reporting and analytics. Architecturally they have been a tightly
coupled system where both storage and compute are provided by the same system. With the
advent of cloud platforms and also columnar data storage format, we got another flavor of data
warehouse where we were able to manage storage and compute separately, thus improving
query performance and achieving scalability [10]. Data Warehouse provides
atomicity-transaction-isolation-durability (ACID) properties, enforces schema and therefore
ensures data quality, and typically provides good query performance through indexing and
partitioning. However on the flip side, its strict enforcement of structured data format limits its
flexibility. Warehouses are also not suited for advanced analytics and often lead to vendor
lock-in.

4.2 Data Lake
The concept of data lake came around 2010 with the emergence of big data technologies. Data
lake addressed the structured data format limitation of data warehouse as data lake was
designed to support all different types of data formats - structured, semi-structured as well as
raw unstructured. Data lake leverages distributed file systems like HDFS and Object store (e.g.
Amazon S3) enabling storage of huge amounts of data at low cost. The principle of data lake
has been to store raw data from source systems in unaltered format into the storage without an
attempt to transform it or integrate with any other system before storage [19]. Having raw data
from source systems allows processing and computation at a later stage as well as transforming
it into different formats to support different use cases including advanced analytics and machine
learning [20]. The emergence of open file formats such as Parquet and ORC brought in the
benefits of interoperability, improved query performance in data lake. However on the down
side, data lake was unable to enforce schema, couldn't guarantee quality of data, and didn't
support ACID transactions like data warehouse.



4.3 Data Lakehouse
Data Lakehouse is the architectural concept which overcomes the limitations of data warehouse
and data lake and provides a unified data solution. It brings together the ACID compliance, data
quality of data warehouse and polyglot data format, low cost storage, interoperability via open
file format of data lake. Open table format works as the lynchpin to accomplish this in the
lakehouse pattern.

Data lakehouse is an open data architecture - combining open file format (Parquet, ORC, Avro)
and open table format (Iceberg, Delta Lake, Hudi) with underlying storage in public cloud (AWS
S3, Azure Blob Storage). A processing engine like Snowflake, Databricks, Spark, Trino uses the
data through the open table format to provide the lakehouse capability. As an example, Apache
Spark doesn’t provide ACID property on its own but it achieves this using open table format [20].
Data lakehouse is not a single software component - a combination of open file format, open
table format and a processing engine together forms a lakehouse. Apart from addressing the
limitations of data warehouse and data lake, data lakehouse provides its own benefits.
Leveraging the capabilities of open table format, lakehouse supports data versioning, time travel
enabling historical, point in time reporting for audit, compliance purposes. The open nature of
underlying table format and file format eliminates vendor locking, making it possible for multiple
processing engines to leverage the same data [10]. Needless to say, single copy of data files
and table format reduces storage costs and avoids data copy, thus allowing organizations to
maintain a single source of truth by implementing a lakehouse pattern.

5. Iceberg In Depth
Iceberg is one of the most popular table formats. It brings SQL behavior into the big data world
[4]. In the decade of 2010, as big data technologies grew in adoption, the data access pattern
from big data platforms deviated away from traditional SQL flavor. Iceberg addresses that and
makes it possible to leverage plain old simple SQL in big data. As a table format, it provides
abstraction to end users and the end user doesn’t need to know how it works under the hood.
As a technology, it also provides a set of APIs and libraries to interact with the platform. As a
table format, it allows multiple query engines and data platforms such as Spark, Trino, Impala
and Snowflake work with the same table simultaneously [21].

5.1 History
Apache Hive is considered a first generation table format. Video streaming giant Netflix was
using Hive and ran into issues with the Hive file format such as performance issues due to
partitioning strategy, file rename, lack of atomic operations [22]. Netflix came up with Iceberg
table format in 2017 to address the problem. Later in 2018 Netflix open sourced it to Apache
Software Foundation. The project came out from incubator status in 2020 [23]. Since then, the
software community is maintaining this project under Apache.

5.2 Architecture
Iceberg table format is a layered metadata architecture [32, 33]. It contains 3 layers [Figure 1] in
the overall solution - a catalog layer, a metadata layer and finally the data layer which are the



open file format Parquet, ORC, Avro files. The middle metadata layer is further broken down into
3 layers of files - metadata file, manifest-list file and manifest file.

Figure-1 - Metadata architecture of Iceberg

In Iceberg table format architecture, the topmost layer is called Catalog. Catalog layer contains
information about the latest metadata location of Iceberg tables. Since it is the source of truth for
the latest data of a table, the metadata pointer change operation in the Iceberg catalog for an
Iceberg table must support atomic operation. In a single catalog file, the metadata pointer for all
tables of Iceberg exists.

Several technologies are available to build the Iceberg catalog. To start with, Apache Hive
metastore can work as an Iceberg catalog and it is one of the oldest and most common catalog
technologies. Nessie [35] is another option which provides a transactional metadata
management system. Nessie is relatively new, but it supports version control like Git and is a
cloud agnostic technology that makes it an interesting choice. There are a bunch of other
options in the AWS ecosystem as well such as AWS Glue, DynamoDB etc, but while these
choices come with the support of AWS, implementation with any of the AWS technology causes



vendor lock-in which makes it a less favorable choice for catalog. Catalogs can be implemented
in relational databases as well, using JDBC as well as REST APIs. In June of 2024, Snowflake
brought in a new catalog format named Polaris [34]. It is currently in public preview and
Snowflake plans to open source the technology which can be deployed within Snowflake
platform or in an organization's own infrastructure.

The next layer below the Catalog layer is the Metadata layer which is broken into 3 sub-layers.
These sub-layers have specific file format requirements - the topmost sub-layer is the metadata
file which is in JSON format. The next two sub-layers in the hierarchy, manifest-list file and
manifest file are in Avro format.

Iceberg architecture has a concept called snapshot. Snapshots represent a consistent,
point-in-time view of a table. Each snapshot captures the complete state of the table, including
all its data files and metadata, at a particular point in time [Figure 2]. A metadata file might
contain one or multiple such snapshots. So, while one catalog file maps to a single metadata
pointer for a table, that metadata pointer might map to many snapshots in the metadata file.
Each such snapshot maps to a single manifest-list file which contains a list of manifest files, thus
making the manifest-list to manifest file mapping, a one-to-many relationship. The manifest file
is the bottommost sublayer of metadata and contains the list of data files where the actual data
for the partition resides.In the metadata section of a manifest-list file, apart from the mapping of
which snapshot a manifest file belongs to and partition information, the upper, lower boundary
value of the partition columns are also maintained. Therefore a query when executed based on
the lower, upper bound value of columns in the partition, Iceberg filters out the partitions which
don't belong to the search criteria - thus narrowing down the scope of the search, resulting in
faster query response. Figure 2, demonstrates the full metadata architecture along with all of the
one-to-one and one-to-many relationships between the layers of Iceberg table format.

The data files are in Parquet, ORC or Avro format, Parquet being the most popular. So while a
manifest file contains mapping of data files underneath it for data of a partition, having multiple
data file means, the partition data is further subdivided into sub-partitions where each data file
contains sub-partition data. This hierarchical structure of Iceberg metadata allows to narrow
down the scope where the search query will run, and also facilitate parallel search across data
files causing search query response time in single digit seconds in a dataset of size in
petabytes. This metadata architecture apparently seems complex but significant benefit in query
performance and interoperability outweighs the complexity of the design.



Figure-2 - Detailed metadata architecture with one-to-one and one-to-many
relationships between layers

For write operations, Iceberg supports both copy-on-write (COW) as well as merge-on-read
(MOR) [36]. For COW mode, Iceberg creates a new copy of the existing data file. The new data
file contains added, updated records and omits deleted records. Manifest file updates its datafile
list to point to the new data file. The old data file gets deleted asynchronously at a later point in
time. Because COW performs this data file copy operation, write is slower compared to MOR
since MOR doesn’t perform a data file copy during write operation. If write operations impact
one or handful number of rows for most of the use cases, then the COW approach is inefficient
as too many files will be created from existing data files when the actual change impacts only a
handful number of records in a file. Apart from increasing use of storage space, COW approach
also has a latency impact for a system that is write heavy. If the number of record updates are
usually large and volume of write operations are small or moderate, then COW is a good choice
for writing in Iceberg. On the other hand, MOR creates a new file during write which contains
records which are updated or deleted. It doesn’t create any copy of the existing data file. As a
result of that, write operation with MOR is faster than COW. However during read operation, the
original data file is updated making read slower for MOR compared to COW. Iceberg
implements MOR using a “delete file” technique. In this technique, a delete file is created with
records to be updated or deleted. During read operation, the delete file together with the original
data file are used for reconciliation to update the existing data file. As part of the compaction
process, whether it is COW or MOR, older data files as well as “delete files” are cleaned up



asynchronously to reduce storage space as well as maintenance overhead. While COW is a
better choice for large but infrequent writes, MOR is just the opposite - it is better for small and
frequent writes due to low latency writes during update/delete. If the system is ready heavy then
MOR is not a good choice compared to COW as read operation takes longer in MOR due to
reconciliation.

5.3 Capabilities
Iceberg as a table format provides several capabilities that’s causing increased adoption of this
technology at a rapid pace in the industry:

● ACID compliance - data manipulations are atomic providing transaction capability
● Hidden partitioning - Hive requires manual partition column definitions which is

inefficient and complex. Iceberg addresses this limitation by providing a hidden
partitioning concept. Iceberg manages partitioning internally by using data structure and
metadata and users remain completely unaware of the partitioning scheme [24].

● Partition Evolution - if performance degrades over time, Iceberg changes the
partitioning scheme on its own enabling partition evolution.

● Schema evolution - Schema evolution is straightforward in Iceberg as only metadata
fields are updated. Standard operations such adding a column, dropping an existing
column or renaming it are all possible in Iceberg using metadata file manipulation. The
data files remain unchanged [26].

● Time Travel - Change in Iceberg causes creating a new version of metadata called
snapshot. Old snapshot remains in the system for a while. This allows users to time
travel over data using date range or version number of a snapshot [27].

● Concurrency - Iceberg allows concurrent reads and writes by multiple engines at the
same time leveraging optimistic concurrency control[10, 28]. When there are multiple
concurrent requests, Iceberg checks for conflicts at the file level, allowing multiple
updates in a partition as long as there are no conflicts.

● File filtering - The metadata files contain min, max values for a column.This allows
query that searches over petabytes of data, come back with result in single digit seconds
producing significant fast performance.

● Table Migration - Iceberg provides a mechanism to create Iceberg metadata files using
metadata files of other table formats such as Delta Lake using its table migration feature.
It comes in 2 flavors - full data migration and in-place data migration. The full data
migration creates a copy of the data files along with creating the Iceberg metadata files.
The in-place migration on the other hand reuses the data files and only creates new
Iceberg metadata files [29].



5.4 Performance
Iceberg has effectively addressed the performance limitations that traditional data lakes often
encounter. The capabilities outlined in the previous sections form the foundation of how Iceberg
delivers exceptional performance.

● Read query performance
○ Metadata & Partitioning: Search is the most essential use case in database

management systems. Iceberg supports low latency search of data in tables of
size in petabytes. It achieves that through its hidden partitioning and file filtering
techniques controlled by its metadata architecture. The lower and upper bound of
column values of a partition in the metadata files allow queries to skip files and
narrow down search scope to return fast response.

○ File compaction - Data fragmentation and increasing number of data files are two
key factors which if not managed efficiently and will slow down execution of query
over time in a database management system. Iceberg periodically runs a
compaction job to merge small files into large ones or by merging delete files with
data files [51]. This helps in maintaining an optimal storage structure which in
turn helps in fast query execution.

● Write Query Performance - Iceberg provides flexibility to implement two types of write
strategy - copy-on-write(COW) and merge-on-read(MOR) [36]. Depending on the nature
of the use cases - ready heavy system vs write heavy system, implementation can
choose appropriate strategy to improve write query execution time by adopting MOR or
compromise in write performance by adopting COW for read heavy systems.

● High throughput - Iceberg uses optimistic concurrency control(OCC) strategy and allows
concurrent read/writes. Allowing concurrency improves the throughput of the overall
system which enables not only execution of multiple requests from a single query engine
but also execution of multiple requests from multiple query engines on the same dataset
at the same time.

● Compression of data - Iceberg supports columnar file format like Parquet, ORC which
inherently supports advanced compression. This allows data to be stored more efficiently
in the underlying storage benefiting query performance when combined with the
metadata architecture of Iceberg.

Iceberg doesn’t support native caching strategies like Delta Cache of Delta Lake [50].
Implementing a similar caching strategy will further boost ready query performance and is an
opportunity for future research on performance optimization.

5.5 Implementation in Big Data Platforms
Iceberg is supported through most of the common query engines such as Spark, Trino, Presto
and data platforms such as Snowflake, Dremio lakehouse. Due to its flexible table format, high
performance, ACID compliance and overall robust architecture, the adoption of this technology
has been attractive to these platforms. All three query engines, Spark, Trino and Presto have
native integration with Iceberg. Dremio uses Iceberg to implement a data lakehouse model and
takes advantage of its time travel capability [30]. Snowflake, the modern cloud data platform,
allows Iceberg connectivity as external volume through its platform. Initially Snowflake



supported 2 types of Iceberg implementation - native table and external tables, it has since then
unified the two approaches and now offer a common solution of Iceberg through configuration
[31]. However for Iceberg integration with Snowflake, the data files must be in Parquet file
format even though Iceberg in general as a technology, supports other file formats such as ORC
and Avro.

6. Iceberg & Other Table Formats - Comparative Analysis
Delta Lake and Apache Hudi are the other popular table formats apart from Iceberg. Apache
Paimon, is another table format which is fairly new and more suitable for batch and stream
operations [37]. In this section, we will briefly discuss the architecture and compare the
architecture and capabilities between Iceberg, Delta Lake and Hudi [Table-1].

6.1 Delta Lake Architecture
Delta Lake also implements a metadata type of solution like Iceberg albeit in a different way. In
Delta Lake architecture there are three types of files - transaction logs which are in JSON
format, checkpoints using Parquet format and the underlying data table which also uses Parquet
format [38]. The table itself is a directory which contains the data files, log transactions as well
as the checkpoint files. The transaction log determines which data files are of which version of a
table. Transaction log records contain something called “actions” - the most notable one is
“Change Metadata” action, which like Iceberg metadata file contains schema and partition
information. Log records are periodically compressed into checkpoints. A checkpoint file stores
a compact, point-in-time snapshot of the table's metadata, reducing the need to replay the entire
log from scratch. In the event of a failure or restart, Delta Lake can recover the latest consistent
state of the table using the checkpoint files.

6.2 Hudi Architecture
Apache Hudi’s [39] metadata architecture revolves around timestamps. Metadata is
implemented using more than one file type - partition metadata and timeline metadata. A single
Hudi table uses several directories to organize metadata. Metadata contains many indexes for
performance optimization. The actual data files are of two types - base file that contain the
actual data and log files which keep track of changes in base file. The base files use Parquet or
ORC format and the log files use Avro format.

6.3 Architecture & Capability Comparison

Iceberg Delta Lake Hudi

Supports Parquet, ORC
and Avro data file format

Supports only Parquet
format

Supports Parquet, ORC
and Avro format

Metadata implementation
hierarchical in nature -
catalog, metadata
layer(metadata file,

Metadata implementation
tabular in nature -
transaction log file and
checkpoint file

Metadata implementation
tabular in nature - partition
metadata and timeline
metadata



manifest-list and manifest
file)

No caching support for
performance optimization

Delta Cache support for
performance optimization

No caching support for
performance optimization

Supports
Copy-On-Write(COW) and
Merge-On-Read(MOR) for
write operations

Supports only
Copy-On-Write(COW)

Supports both
Copy-On-Write(COW) and
Merge-On-Read(MOR)

Hidden partitioning and
partition evolution
supported

Explicit partitioning
required, partition pruning
supported

Explicit partitioning
required and partition
evolution supported

Snapshot versions are
used for time travel

Transaction log based
versioning for time travel

Time travel based on
incremental commits and
versions

Schema evolution
supported including
addition and rename of
fields

Supports schema evolution
without requiring schema
migration

Schema evolution
supported with automatic
handling of schema
migration

Concurrency writes are
supported using Optimistic
Concurrency Control and
snapshots

Transaction log based
Optimistic Concurrency
Control

Optimistic concurrency
control using multi-version
concurrency control

Table-1

6.4 Interoperability - Metadata Conversion
Even though the table formats help building interoperable solutions and avoid data copies, the
challenge with interoperability still remains to some degree if certain query engines are
compatible with specific table formats only. Snowflake, the modern data cloud platform works
with only Iceberg table format. Therefore even if data files are in Parquet but metadata formats
are in Delta Lake or Hudi, Snowflake will not be able to process the data. In order to solve the
problem, table format technologies are also implementing solutions to generate metadata in
multiple formats to truly achieve interoperability.
Iceberg can generate metadata format from other table formats such as Delta Lake or Hudi into
Iceberg format [41]. There are two different techniques Iceberg supports - full data migration and
in-place data migration. Full data migration not only creates Iceberg metadata but also creates a
copy of the data files as well. On the other hand, in-place data migration creates only metadata
and the original data files are used. In-place is preferable as the purpose of open table format
and open file formats are to not duplicate data and allow access to the same data through
multiple engines. Delta Lake supports a similar process using Delta Uniform [42]. Unlike Iceberg
table migration which creates Iceberg compatible metadata from other table formats, Delta
Uniform does the opposite . Delta Uniform creates Iceberg or Hudi compatible metadata from



the original Delta Lake table format. Hudi on the other hand doesn’t support creating other table
formats.
Apache XTable is a new open source technology that supports cross table format
interoperability [40]. While Iceberg and Delta Lake support only one way conversion of metadata
(Delta Lake/Hudi to Iceberg by Iceberg, Delta Lake to Iceberg/Hudi by Delta Uniform), XTable
creates metadata from any format to any format. As an example, if the existing table format is in
Iceberg, XTable can generate Delta Lake and Hudi metadata. Likewise if the existing table
format is in Delta Lake, XTable can generate Iceberg and Hudi metadata. XTable also supports
the emerging table format Apache Paimon [37].

6.5 Table Format Ecosystem

Figure-3: The overall landscape of table format and it’s adoption by various
data platforms and query engines



All three table formats have wide industry adoption - while Iceberg was founded by Netflix and
adopted by Adobe, Apple, Hudi is used at companies like Uber, Walmart, Robinhood. Delta
Lake on the other hand is used by prominent organizations such as Instacart and Comcast. Due
to its flexible catalog approach, integration of Iceberg in this data space seems to be making
more progress than Delta Lake and Hudi [20].

6.6 Iceberg Specialities
Iceberg supports Git-like capabilities such as branching, tagging through integration with Project
Nessie [35, 43]. Nessie in the big data world is synonymous to Git in source code repositories
[35]. Using the Nessie extension in Iceberg, the catalog table of Iceberg can be simultaneously
updated by multiple users across different branches and later commit the changes from the
individual branches to the main branch. This is a technique to accomplish multi-table
transactions in Iceberg which is not natively supported otherwise. Because Nessie works like
the Git version control system, it allows listing commit history and even cherry picking commits
across branches if needed [43]. This capability is not available in other table formats at this
moment.

7. Disruption & Adoption
Iceberg is a disruptive technology which is being broadly adopted by top organizations and
having tangible impacts across many sectors- finance, retail, healthcare and entertainment and
even within the software industry itself [Table-2]. It is an already matured technology that is
solving decade old complex problems of the big data world, in a stable and reliable manner.

● Data Integrity and version control - this technology brings versioning and atomic
operations in big data. Together with its time travel capability, organizations can access
historical, point in time views of data without the risk of data corruption which was not
achievable in data lake. This particularly benefits industries like finance to support
compliance, audit and reporting.

● Performance in large dataset - Organizations are generating and ingesting massive
volumes of data at a rapid pace which often requires near real-time data analysis at low
latency. This was difficult in traditional data lake. Iceberg as a transformative technology
makes this possible through its dynamic partitioning and file filterng strategy.

● Implement complex data strategy with ease - Iceberg as a technology supports schema
evolution - forward and backward compatible schema management, quite similar to
Kafka [44]. This allows organizations to modify their data model due to evolving business
needs, avoiding breakage in their data architecture. In the retail sector, where due to the
variety and veracity of data, data models evolve quickly, schema evolution of Iceberg
allows such changes to happen without disruption in the data pipeline of the
organization.

● Cost efficiency - the interoperability of the table format combined with adaptability across
multiple data engines enables organizations to avoid data copies and vendor lock in.
This reduces storage costs as well as relieves organizations from being forced to choose
more than one data engine for their use cases, thus reducing cost on technology
investments.



● Future-proof data architecture - Historically organizations had to overhaul their data
strategy with the emergence of new technologies which is costly as well as time
consuming. Iceberg’s open table format architecture allows adaptability across existing
technologies as well as emerging technologies in the data field.

Adoption Use Cases

Adobe Data integrity, version control and scalability
of data platform [46]

Netflix Scalability and performance for streaming
[45]

Apple Time travel for ML use cases, ACID for
GDPR, improvement in batch reliability using
Iceberg with Spark [1, 47]

Shopify Scaling an interoperability of data across
multiple engines in the organization [48]

Pinterest Cost reduction of infrastructure by cutting
down cloud compute resources for
recommendation, content delivery use cases
[49]

Snowflake Allow customer leverage their external
storage having Iceberg data and provide rich
capabilities and governance of Snowflake
[17]

Table-2: Adoption of Iceberg across organizations of different sectors

In summary, Iceberg addresses key data management challenges by providing fast query
performance, establishing single source-of-truth by avoiding data copies, reduction of storage
cost and maintenance overhead. By providing ACID, concurrency, interoperability, and
performance for polyglot data types, this technology opens up data democratization and solves
key issues of legacy data systems, thus establishing itself as a truly disruptive technology.

8. Iceberg Limitations & Future Scope
There are a few limitations of Apache Iceberg which gives an opportunity for future research
and improvement.

1. Iceberg table migration only allows creating Iceberg metadata from other formats. It
doesn’t allow creating metadata of other table formats from Iceberg metadata. Adding
this capability in Iceberg to seamlessly create Delta Lake or Hudi metadata through its
library or APIs would be a welcome addition towards achieving interoperability.

2. Iceberg, like other table formats, is suited for use in cloud platforms. We should have
Iceberg available for use in on-premise infrastructure as well since many organizations



have legal, compliance and regulatory restrictions (like finance and healthcare) to store
data within the organization datacenter. This restricts organizations who host data lake in
their infrastructure from being able to take advantage of Iceberg open table format.

3. While the table format in general is interoperable and engine agnostic, the metadata
layer requires files to be in specific formats - catalog file should be JSON and metadata,
manifest-list and manifest-file should be in Avro. While this is not a major problem but
certainly can be considered for future research opportunities to make the metadata files
format agnostic.

4. Metadata architecture simplification - while Iceberg shines with it’s hierarchical metadata
layout, the overall metadata architecture though comprehensive, is complicated. In the
event when there are many small files, the metadata size can grow significantly causing
slow query performance for large datasets.

5. Unlike other table formats like Delta Lake which supports query performance
improvement via Delta Cache, Iceberg doesn’t have such a feature. A future
enhancement to add caching ability to improve query performance is desirable.

9. Conclusion
Apache Iceberg is an open table format gaining fast popularity across big data technologies and
organizations. In this paper we deeply reviewed what Iceberg is, why it is important and how it
works with open file formats. We explained the importance of interoperability where table
formats like Iceberg play a key role in reducing storage cost, avoiding data copies to help
establish single-source-of-truth and thus reducing data management complexities in the
organization. We reviewed in detail about its architecture and how the architecture helps in
implementing its unique capabilities. We also highlighted how open table formats like Iceberg
are rapidly gaining ground in the space of big data, and lakehouse. We also reviewed other
similar technologies like Iceberg in the form of Delta Lake and Hudi and made a comparative
analysis with Iceberg in terms of architecture and capabilities. We reviewed Iceberg’s adoption
across various data platforms and query engines. We ended with discussing its current
limitations and future improvement opportunities which may broaden its adoption across
industry and developer communities. This paper highlighted not only the technical
advancements brought by Iceberg in the data world but also established why it should be
recognized as a disruptive technology having profound impacts by solving today’s pressing
problems of big data management.
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